Adversarial Examples for Evaluating Reading Comprehension Systems

Robin Jia, Percy Liang (Stanford Univ.) @ EMNLP2017

Reader: Saku Sugawara (Univ. Tokyo) September 15, 2017 at SNLP9

Abstract

Research Question

The extent to which reading comprehension (RC) systems truly understand lanugage remains unclear.

Proposed Method

An adversarial evaluation scheme for the RC dataset: testing whether systems can answer questions about paragraphs that contain adversarially inserted sentences.

Result

- The accuracy of sixteen published models drops from an average of 75% F1 score to 36%.
- → Experiments demonstrate that no published open-source model is robust to the addition of adversarial sentences.

Introduction - RC Task

Article: Super Bowl 50 **Paragraph:** "Peyton Manning became the first guarterbackever to lead two different teams to multiple Super Bowls. He is also the oldest guarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager." **Question:** "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" **Answer:** John Elway

Introduction - RC Task

Article: Super Bowl 50 **Paragraph:** "Peyton Manning became the first guarterbackever to lead two different teams to multiple Super Bowls. He is also the oldest guarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager." Question: "What is the name of the guarterback who was 38 in Super Bowl XXXIII?" **Answer:** John Elway

Introduction - Adversarial Sentence

Article: Super Bowl 50 Paragraph: "Peyton Manning became the first guarterbackever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV." Question: "What is the name of the guarterback who was 38 in Super Bowl XXXIII?" **Answer: John Elway**

Introduction - Adversarial Sentence

Article: Super Bowl 50 **Paragraph:** "Peyton Manning became the first guarterbackever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV." Question: "What is the name of the guarterback who was 38 in Super Bowl XXXIII?" **Original Prediction: John Elway** Prediction by BiDAF model under adversary: Jeff Dean

Adversarial Example

	Image	Reading	
	Classification	Comprehension	
Possible		Tesla moved	
Input		to the city of	
	6	Chicago in 1880.	
Similar		Tadakatsu moved	
Input		to the city of	
		Chicago in 1881.	
Semantics	Same	Different	
Model's	Considers the two	Considers the two	
Mistake	to be different	to be the same	
Model	Overly	Overly	
Weakness	sensitive	stable	

Framework for Adversarial Evaluation

$$\operatorname{AdvAcc}(f) \stackrel{\text{def}}{=} \frac{1}{|D_{\text{test}}|} \sum_{(p,q,a) \in D_{\text{test}}} v(Adv(p,q,a,f), f)$$

• p,q,a: paragraph, question, answre

♣ f: model

- BiDAF (Seo⁺ 2016) [arXiv]
- Match-LSTM (Wang and Jiang, 2016) [arXiv]
- v: F1 accuracy of predicted and gold answer
- ✤ Adv: adversary
 - AddSent, AddAny

Adversaries

✤ AddSent

No contradiction, grammatically correct

AddAny

Can be contradict, ungrammatical, no semantic content

AddSent

- Mutate question
 Noun/adjective → antonym
 NE → nearest word in GloVe

 Generate fake answer
 - 26 types (NER and POS tags)
 - = 26 manual fake answers
- 3. Convert

by 50 manually-defined rules

Fix errors by crowdworkers
 5 workers = 5 candidates
 use the worst candidate for
 each model

AddAny

- 1. Initialize words randomly from common English words.
- 2. Greedily replace a word with {random 20 words + words in *q*}

Adversaries

AddSent

No contradiction, grammatically correct

- AddOneSent (modified AddSent) Using ramdonly selected candidate
- AddAny

Can be contradict, ungrammatical, no semantic content

AddCommon (modified AddAny) Using only common words for greedy searching

- Main models
 - BiDAF (Seo⁺ 2016) [arXiv]
 - Match-LSTM (Wang and Jiang, 2016) [arXiv]
- Other models: 12 models (see the paper!)
- 1000 sampled examples from the development set of SQuAD (2016)
- Codes: [codalab]

What is SQuAD?

Stanford **Qu**estion **A**nswering **D**ataset (SQuAD) is a new reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or *span*, from the corresponding reading passage. With 100,000+ question-answer pairs on 500+ articles, SQuAD is significantly larger than previous reading comprehension datasets.

Main Models - BiDAF (Seo⁺ 2016)

Main Models - Match-LSTM (Wang⁺ 2016)

Result - Main Models

	Match	Match	BiDAF	BiDAF
	Single	Ens.	Single	Ens.
Original	71.4	75.4	75.5	80.0
AddSent	27.3	29.4	34.3	34.2
ADDONESENT	39.0	41.8	45.7	46.9
AddAny	7.6	11.7	4.8	2.7
AddCommon	38.9	51.0	41.7	52.6

AddSent= model dependent (grammar: correct)

- AddOneSent= model independent (grammar: correct)
- AddAny= question dependent (grammar: incorrect)
- AddCommon= question independent (grammar: incorrect)

Result - Other Models

Model	Original	AddSent	ADDONESENT
ReasoNet-E	81.1	39.4	49.8
SEDT-E	80.1	35.0	46.5
BiDAF-E	80.0	34.2	46.9
Mnemonic-E	79.1	46.2	55.3
Ruminating	78.8	37.4	47.7
jNet	78.6	37.9	47.0
Mnemonic-S	78.5	46.6	56.0
ReasoNet-S	78.2	39.4	50.3
MPCM-S	77.0	40.3	50.0
SEDT-S	76.9	33.9	44.8
RaSOR	76.2	39.5	49.5
BiDAF-S	75.5	34.3	45.7
Match-E	75.4	29.4	41.8
Match-S	71.4	27.3	39.0
DCR	69.3	37.8	45.1
Logistic	50.4	23.2	30.4

Result - Human Evaluation / Verification

Human Evaluation

	Human
Original	92.6
ADDSENT	79.5
ADDONESENT	89.2

Manual Verification for 100 samples

Answer contradiction: 1 example
Grammar error: 7 example

Analysis - Transferability

	Model under Evaluation			
Torgeted Model	ML	ML	BiDAF	BiDAF
Targeted Model	Single	Ens.	Single	Ens.
ADDSENT				
ML Single	27.3	33.4	40.3	39.1
ML Ens.	31.6	29.4	40.2	38.7
BiDAF Single	32.7	34.8	34.3	37.4
BiDAF Ens.	32.7	34.2	38.3	34.2
ADDANY				
ML Single	7.6	54.1	57.1	60.9
ML Ens.	44.9	11.7	50.4	54.8
BiDAF Single	58.4	60.5	4.8	46.4
BiDAF Ens.	48.8	51.1	25.0	2.7

AddSent is transferable, AddAny is not transferable?

Analysis - Adversarial Training Data

	Training data		
Test data	Original	Augmented	
Original	75.8	75.1	
ADDSENT	34.8	70.4	
AddSentMod	34.3	39.2	

Training data: AddSent (except crowdosurcing)

- ✤ AddSentMod: a variant of AddSent
 - Using a different set of fake answers
 - (e.g. Jeff Dean \rightarrow Charles Babbage)
 - Prepending the adversarial sentence to the beginning of the paragraph (instead of appending it to the end)
- → More care must be taken to ensure that the model cannot overfit the adversary!

Summary

Research Question

The extent to which reading comprehension (RC) systems truly understand lanugage remains unclear.

Proposed Method

An adversarial evaluation scheme for the RC dataset: testing whether systems can answer questions about paragraphs that contain adversarially inserted sentences.

Result

- The accuracy of sixteen published models drops from an average of 75% F1 score to 36%.
- → Experiments demonstrate that no published open-source model is robust to the addition of adversarial sentences.